preprints | peer-reviewed | book chapters | technical reports slides for conference talks: slides.com/kmodin preprints K. Modin, and S. C. Preston Zeitlin’s model for axisymmetric 3-D Euler equations 2024 arXiv Bib @misc{MoPr2024, title = {Zeitlin's model for axisymmetric {3-D} {E}uler equations}, author = {Modin, K. and Preston, S. C.}, year = {2024}, } K. Modin, and M. Viviani Two-dimensional fluids via matrix hydrodynamics 2024 arXiv Bib @misc{MoVi2024, title = {Two-dimensional fluids via matrix hydrodynamics}, author = {Modin, K. and Viviani, M.}, year = {2024}, } K. Modin, and M. Roop Spatio-temporal Lie-Poisson discretization for incompressible magnetohydrodynamics on the sphere 2023 arXiv Bib @misc{MoRo2023, title = {Spatio-temporal {L}ie-{P}oisson discretization for incompressible magnetohydrodynamics on the sphere}, author = {Modin, K. and Roop, M.}, year = {2023}, } E. Jansson, and K. Modin Sub-Riemannian landmark matching and its interpretation as residual neural networks 2022 arXiv Bib @misc{JaMo2023, author = {Jansson, E. and Modin, K.}, title = {Sub-{R}iemannian landmark matching and its interpretation as residual neural networks}, year = {2022}, } peer-reviewed articles 2024 K. Modin, and M. Perrot Eulerian and Lagrangian stability in Zeitlin’s model of hydrodynamics Comm. Math. Phys., 2024 arXiv DOI Bib @article{MoPe2024, author = {Modin, K. and Perrot, M.}, journal = {Comm. Math. Phys.}, title = {{E}ulerian and {L}agrangian stability in {Z}eitlin's model of hydrodynamics}, url = {https://doi.org/10.1007/s00220-024-05047-x}, doi = {10.1007/s00220-024-05047-x}, pages = {177}, volume = {405}, year = {2024}, } K. Modin On the geometry and dynamical formulation of the Sinkhorn algorithm for optimal transport J. Comput. Dyn., 2024 arXiv DOI Bib @article{Mo2024, author = {Modin, K.}, journal = {J. Comput. Dyn.}, title = {On the geometry and dynamical formulation of the {S}inkhorn algorithm for optimal transport}, url = {https://doi.org/10.3934/jcd.2024006}, doi = {10.3934/jcd.2024006}, year = {2024}, } B. Khesin, K. Modin, and L. Volk Simple unbalanced optimal transport Int. Math. Res. Not., 2024 arXiv DOI Bib @article{KhMoVo2024, author = {Khesin, B. and Modin, K. and Volk, L.}, doi = {10.1093/imrn/rnae020}, issue = {10}, journal = {Int. Math. Res. Not.}, pages = {8839--8855}, title = {Simple unbalanced optimal transport}, url = {https://doi.org/10.1093/imrn/rnae020}, volume = {2024}, year = {2024}, } E. Jansson, and K. Modin Convergence of the vertical gradient flow for the Gaussian Monge problem J. Comput. Dyn., 2024 arXiv DOI Bib @article{JaMo2024, author = {Jansson, E. and Modin, K.}, doi = {10.3934/jcd.2023008}, journal = {J. Comput. Dyn.}, title = {Convergence of the vertical gradient flow for the {G}aussian {M}onge problem}, url = {https://doi.org/10.3934/jcd.2023008}, volume = {11}, pages = {1--9}, year = {2024}, } 2023 B. Khesin, and K. Modin The Toda flow as a porous medium equation Comm. Math. Phys., 2023 arXiv DOI Bib @article{KhMo2023, author = {Khesin, B. and Modin, K.}, doi = {10.1007/s00220-023-04680-2}, journal = {Comm. Math. Phys.}, pages = {1879--1898}, title = {The {T}oda flow as a porous medium equation}, url = {https://doi.org/10.1007/s00220-023-04680-2}, volume = {401}, year = {2023}, } M. Maurelli, K. Modin, and A. Schmeding Incompressible Euler equations with stochastic forcing: a geometric approach Stochastic Process. Appl., 2023 arXiv DOI Bib @article{MaMoSc2023, author = {Maurelli, M. and Modin, K. and Schmeding, A.}, doi = {10.1016/j.spa.2023.01.011}, journal = {Stochastic Process. Appl.}, pages = {101--148}, title = {Incompressible {E}uler equations with stochastic forcing: a geometric approach}, url = {https://doi.org/10.1016/j.spa.2023.01.011}, volume = {159}, year = {2023}, } P. Cifani, M. Viviani, and K. Modin An efficient geometric method for incompressible hydrodynamics on the sphere J. Comput. Phys., 2023 arXiv DOI Bib @article{CiViMo2022, author = {Cifani, P. and Viviani, M. and Modin, K.}, doi = {10.1016/j.jcp.2022.111772}, journal = {J. Comput. Phys.}, pages = {111772}, title = {An efficient geometric method for incompressible hydrodynamics on the sphere}, url = {https://doi.org/10.1016/j.jcp.2022.111772}, volume = {473}, year = {2023}, } 2022 LMS T. Balehowsky, C-J. Karlsson, and K. Modin Shape analysis via gradient flows on diffeomorphism groups Nonlinearity, 2022 arXiv DOI Bib @article{BaKaMo2022, author = {Balehowsky, T. and Karlsson, C-J. and Modin, K.}, doi = {10.1088/1361-6544/aca73c}, journal = {Nonlinearity}, pages = {862}, title = {Shape analysis via gradient flows on diffeomorphism groups}, url = {https://doi.org/10.1088/1361-6544/aca73c}, volume = {36}, year = {2022}, } PhysRev P. Cifani, M. Viviani, E. Luesink, K. Modin, and B. Geurts Casimir preserving spectrum of two-dimensional turbulence Phys. Rev. Fluids, 2022 arXiv DOI Bib @article{CiViLuMoGe2022, author = {Cifani, P. and Viviani, M. and Luesink, E. and Modin, K. and Geurts, B.}, doi = {10.1103/PhysRevFluids.7.L082601}, journal = {Phys. Rev. Fluids}, pages = {L082601}, title = {Casimir preserving spectrum of two-dimensional turbulence}, url = {https://doi.org/10.1103/PhysRevFluids.7.L082601}, volume = {7}, year = {2022}, } JFM K. Modin, and M. Viviani Canonical scale separation in two-dimensional incompressible hydrodynamics J. Fluid Mech., 2022 arXiv DOI Bib @article{MoVi2022, author = {Modin, K. and Viviani, M.}, doi = {10.1017/jfm.2022.457}, journal = {J. Fluid Mech.}, pages = {A36}, title = {Canonical scale separation in two-dimensional incompressible hydrodynamics}, url = {https://doi.org/10.1017/jfm.2022.457}, volume = {943}, year = {2022}, } 2021 AMS B. Khesin, G. Misiolek, and K. Modin Geometric hydrodynamics and infinite-dimensional Newton’s equations Bull. Amer. Math. Soc., 2021 arXiv DOI Bib @article{KhMiMo2021, author = {Khesin, B. and Misiolek, G. and Modin, K.}, doi = {10.1090/bull/1728}, journal = {Bull. Amer. Math. Soc.}, pages = {377--442}, title = {Geometric hydrodynamics and infinite-dimensional {N}ewton's equations}, url = {https://doi.org/10.1090/bull/1728}, volume = {58}, year = {2021}, } K. Modin, and M. Viviani Integrability of point-vortex dynamics via symplectic reduction: a survey Arnold Math. J., 2021 arXiv DOI Bib @article{MoVi2021, author = {Modin, K. and Viviani, M.}, doi = {10.1007/s40598-020-00162-8}, journal = {Arnold Math. J.}, number = {3}, pages = {357--385}, title = {Integrability of point-vortex dynamics via symplectic reduction: a survey}, url = {https://doi.org/10.1007/s40598-020-00162-8}, volume = {7}, year = {2021}, } 2020 K. Modin, and O. Verdier What makes nonholonomic integrators work? Numer. Math., 2020 arXiv DOI Bib @article{MoVe2020, author = {Modin, K. and Verdier, O.}, doi = {10.1007/s00211-020-01126-y}, journal = {Numer. Math.}, pages = {405--435}, title = {What makes nonholonomic integrators work?}, url = {https://doi.org/10.1007/s00211-020-01126-y}, volume = {145}, year = {2020}, } M. Bauer, and K. Modin Semi-invariant Riemannian metrics in hydrodynamics Calc. Var. Partial Differential Equations, 2020 arXiv DOI Bib @article{BaMo2020, author = {Bauer, M. and Modin, K.}, doi = {10.1007/s00526-020-1722-x}, journal = {Calc. Var. Partial Differential Equations}, pages = {65}, title = {Semi-invariant {R}iemannian metrics in hydrodynamics}, url = {https://doi.org/10.1007/s00526-020-1722-x}, volume = {59}, year = {2020}, } JFM K. Modin, and M. Viviani A Casimir preserving scheme for long-time simulation of spherical ideal hydrodynamics J. Fluid Mech., 2020 arXiv DOI Bib @article{MoVi2020, author = {Modin, K. and Viviani, M.}, doi = {10.1017/jfm.2019.944}, journal = {J. Fluid Mech.}, pages = {A22}, title = {A {C}asimir preserving scheme for long-time simulation of spherical ideal hydrodynamics}, url = {https://doi.org/10.1017/jfm.2019.944}, volume = {884}, year = {2020}, } FoCM K. Modin, and M. Viviani Lie-Poisson methods for isospectral flows Found. Comput. Math., 2020 arXiv DOI Bib @article{MoVi2020a, author = {Modin, K. and Viviani, M.}, doi = {10.1007/s10208-019-09428-w}, journal = {Found. Comput. Math.}, pages = {889--921}, title = {{L}ie-{P}oisson methods for isospectral flows}, url = {https://doi.org/10.1007/s10208-019-09428-w}, volume = {20}, year = {2020}, } 2019 J. Benn, S. Marsland, R. McLachlan, K. Modin, and O. Verdier Currents and finite elements as tools for shape space J. Math. Imaging Vis., 2019 arXiv DOI Bib @article{BeMaMcMoVe2019, author = {Benn, J. and Marsland, S. and McLachlan, R. and Modin, K. and Verdier, O.}, doi = {10.1007/s10851-019-00896-x}, journal = {J. Math. Imaging Vis.}, number = {8}, pages = {1197--1220}, title = {Currents and finite elements as tools for shape space}, url = {https://doi.org/10.1007/s10851-019-00896-x}, volume = {61}, year = {2019}, } B. Khesin, G. Misiolek, and K. Modin Geometry of the Madelung transform Arch. Ration. Mech. Anal., 2019 arXiv DOI Bib @article{KhMiMo2019, author = {Khesin, B. and Misiolek, G. and Modin, K.}, doi = {10.1007/s00205-019-01397-2}, journal = {Arch. Ration. Mech. Anal.}, number = {2}, pages = {549--573}, title = {Geometry of the {M}adelung transform}, url = {https://doi.org/10.1007/s00205-019-01397-2}, volume = {234}, year = {2019}, } PhysRev J. Hellsvik, D. Thonig, K. Modin, D. Iusan, A. Bergman, O. Eriksson, L. Bergqvist, and A. Delin General method for atomistic spin-lattice dynamics with first-principles accuracy Phys. Rev. B, 2019 arXiv DOI Bib @article{HeThMoIuBeErBeDe2019, author = {Hellsvik, J. and Thonig, D. and Modin, K. and Iusan, D. and Bergman, A. and Eriksson, O. and Bergqvist, L. and Delin, A.}, doi = {10.1103/PhysRevB.99.104302}, journal = {Phys. Rev. B}, pages = {104302}, title = {General method for atomistic spin-lattice dynamics with first-principles accuracy}, url = {https://doi.org/10.1103/PhysRevB.99.104302}, volume = {99}, year = {2019}, } 2018 K. Modin, A. Nachman, and L. Rondi A Multiscale Theory for Image Registration and Nonlinear Inverse Problems Adv. Math., 2018 arXiv DOI Bib @article{MoNaRo2018, author = {Modin, K. and Nachman, A. and Rondi, L.}, doi = {10.1016/j.aim.2019.02.014}, journal = {Adv. Math.}, pages = {1009--1066}, title = {A Multiscale Theory for Image Registration and Nonlinear Inverse Problems}, url = {https://doi.org/10.1016/j.aim.2019.02.014}, volume = {346}, year = {2018}, } SIAM G. Bogfjellmo, K. Modin, and O. Verdier A Numerical Algorithm for C2-splines on Symmetric Spaces SIAM J. Numer. Analysis, 2018 arXiv DOI Bib @article{BoMoVe2018, author = {Bogfjellmo, G. and Modin, K. and Verdier, O.}, doi = {10.1137/17M1123353}, journal = {SIAM J. Numer. Analysis}, number = {4}, pages = {2623--2647}, title = {A Numerical Algorithm for {C2}-splines on Symmetric Spaces}, url = {https://doi.org/10.1137/17M1123353}, volume = {56}, year = {2018}, } PNAS B. Khesin, G. Misiolek, and K. Modin Geometric Hydrodynamics via Madelung Transform Proc. Natl. Acad. Sci. USA, 2018 arXiv DOI Bib @article{KhMiMo2018, author = {Khesin, B. and Misiolek, G. and Modin, K.}, doi = {10.1073/pnas.1719346115}, journal = {Proc. Natl. Acad. Sci. USA}, number = {24}, pages = {6165--6170}, title = {Geometric Hydrodynamics via {M}adelung Transform}, url = {https://doi.org/10.1073/pnas.1719346115}, volume = {115}, year = {2018}, } 2017 M. Bauer, S. Joshi, and K. Modin Diffeomorphic random sampling using optimal information transport In Nielsen F., Barbaresco F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science, vol 10589. Springer, 2017 arXiv DOI Bib @inproceedings{BaJoMo2017, author = {Bauer, M. and Joshi, S. and Modin, K.}, booktitle = {Nielsen F., Barbaresco F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science, vol 10589. Springer}, doi = {10.1007/978-3-319-68445-1_16}, title = {Diffeomorphic random sampling using optimal information transport}, url = {https://doi.org/10.1007/978-3-319-68445-1_16}, year = {2017}, } M. Bauer, S. Joshi, and K. Modin On Geodesic Completeness of Riemannian Metrics on Smooth Probability Densities Calc. Var. Partial Differential Equations, 2017 arXiv DOI Bib @article{BaJoMo2017a, author = {Bauer, M. and Joshi, S. and Modin, K.}, doi = {10.1007/s00526-017-1195-8}, journal = {Calc. Var. Partial Differential Equations}, pages = {113}, title = {On Geodesic Completeness of {R}iemannian Metrics on Smooth Probability Densities}, url = {http://dx.doi.org/10.1007/s00526-017-1195-8}, volume = {56}, year = {2017}, } K. Modin Geometry of Matrix Decompositions Seen Through Optimal Transport and Information Geometry J. Geom. Mech., 2017 arXiv DOI Bib @article{Mo2017, author = {Modin, K.}, doi = {10.3934/jgm.2017014}, journal = {J. Geom. Mech.}, number = {3}, pages = {335--390}, title = {Geometry of Matrix Decompositions Seen Through Optimal Transport and Information Geometry}, url = {http://dx.doi.org/10.3934/jgm.2017014}, volume = {9}, year = {2017}, } R. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier Butcher series: A story of rooted trees and numerical methods for evolution equations Asia Pacific Mathematics Newsletter, 2017 arXiv Bib @article{McMoMuVe2017, author = {McLachlan, R. and Modin, K. and Munthe-Kaas, H. and Verdier, O.}, journal = {Asia Pacific Mathematics Newsletter}, number = {1}, pages = {1--11}, title = {Butcher series: A story of rooted trees and numerical methods for evolution equations}, volume = {7}, year = {2017}, } AMS R. McLachlan, K. Modin, and O. Verdier A minimal-variable symplectic integrator on spheres Math. Comp., 2017 arXiv DOI Bib @article{McMoVe2017, author = {McLachlan, R. and Modin, K. and Verdier, O.}, doi = {10.1090/mcom/3153}, journal = {Math. Comp.}, number = {307}, pages = {2325--2344}, title = {A minimal-variable symplectic integrator on spheres}, url = {http://dx.doi.org/10.1090/mcom/3153}, volume = {86}, year = {2017}, } 2016 R. McLachlan, K. Modin, and O. Verdier Symmetry reduction for central force problems Eur. J. Phys., 2016 arXiv DOI Bib @article{McMoVe2016, author = {McLachlan, R. and Modin, K. and Verdier, O.}, doi = {10.1088/0143-0807/37/5/055003}, journal = {Eur. J. Phys.}, number = {5}, pages = {0055003}, title = {Symmetry reduction for central force problems}, url = {http://dx.doi.org/10.1088/0143-0807/37/5/055003}, volume = {37}, year = {2016}, } R. McLachlan, K. Modin, and O. Verdier Geometry of discrete-time spin systems J. Nonlin. Sci., 2016 arXiv DOI Bib @article{McMoVe2016a, author = {McLachlan, R. and Modin, K. and Verdier, O.}, doi = {10.1007/s00332-016-9311-z}, journal = {J. Nonlin. Sci.}, number = {5}, pages = {1507--1523}, title = {Geometry of discrete-time spin systems}, url = {http://dx.doi.org/10.1007/s00332-016-9311-z}, volume = {26}, year = {2016}, } R. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier B-series methods are exactly the affine equivariant methods Numer. Math., 2016 arXiv DOI Bib @article{McMoMuVe2016, author = {McLachlan, R. and Modin, K. and Munthe-Kaas, H. and Verdier, O.}, doi = {10.1007/s00211-015-0753-2}, journal = {Numer. Math.}, number = {3}, pages = {599--622}, title = {B-series methods are exactly the affine equivariant methods}, url = {http://dx.doi.org/10.1007/s00211-015-0753-2}, volume = {133}, year = {2016}, } 2015 C. Rottman, M. Bauer, K. Modin, and S. Joshi Weighted Diffeomorphic Density Matching with Applications to Thoracic Image Registration In Proc. 5th MICCAI Workshop on Mathematical Foundations of Computational Anatomy (MFCA), Munich, Germany, October 9, 2015 arXiv Bib @inproceedings{RoBaMoJo2015, author = {Rottman, C. and Bauer, M. and Modin, K. and Joshi, S.}, booktitle = {Proc. 5th MICCAI Workshop on Mathematical Foundations of Computational Anatomy (MFCA), Munich, Germany, October 9}, title = {Weighted Diffeomorphic Density Matching with Applications to Thoracic Image Registration}, year = {2015}, } SIAM M. Bauer, S. Joshi, and K. Modin Diffeomorphic density matching by optimal information transport SIAM J. Imaging Sci., 2015 arXiv DOI Bib @article{BaJoMo2015, author = {Bauer, M. and Joshi, S. and Modin, K.}, doi = {10.1137/151006238}, journal = {SIAM J. Imaging Sci.}, number = {3}, pages = {1718--1751}, title = {Diffeomorphic density matching by optimal information transport}, url = {http://dx.doi.org/10.1137/151006238}, volume = {8}, year = {2015}, } IMA R. McLachlan, K. Modin, and O. Verdier Collective Lie-Poisson integrators on R3 IMA. J. Num. Anal., 2015 arXiv DOI Bib @article{McMoVe2015, author = {McLachlan, R. and Modin, K. and Verdier, O.}, doi = {10.1093/imanum/dru013}, journal = {IMA. J. Num. Anal.}, number = {2}, pages = {546--560}, title = {Collective {L}ie-{P}oisson integrators on {R3}}, url = {http://dx.doi.org/10.1093/imanum/dru013}, volume = {35}, year = {2015}, } K. Modin Generalized Hunter-Saxton equations, optimal information transport, and factorization of diffeomorphisms J. Geom. Anal., 2015 arXiv DOI Bib @article{Mo2015, author = {Modin, K.}, doi = {10.1007/s12220-014-9469-2}, journal = {J. Geom. Anal.}, number = {2}, pages = {1306--1334}, title = {Generalized {H}unter-{S}axton equations, optimal information transport, and factorization of diffeomorphisms}, url = {http://dx.doi.org/10.1007/s12220-014-9469-2}, volume = {25}, year = {2015}, } 2014 PhysRev R. McLachlan, K. Modin, and O. Verdier Symplectic integrators for spin systems Phys. Rev. E, 2014 arXiv DOI Bib @article{McMoVe2014, author = {McLachlan, R. and Modin, K. and Verdier, O.}, doi = {10.1103/PhysRevE.89.061301}, journal = {Phys. Rev. E}, pages = {061301}, title = {Symplectic integrators for spin systems}, url = {http://dx.doi.org/10.1103/PhysRevE.89.061301}, volume = {89}, year = {2014}, } LMS R. McLachlan, K. Modin, and O. Verdier Collective symplectic integrators Nonlinearity, 2014 arXiv DOI Bib @article{McMoVe2014a, author = {McLachlan, R. and Modin, K. and Verdier, O.}, doi = {10.1088/0951-7715/27/6/1525}, journal = {Nonlinearity}, number = {6}, pages = {1525--1542}, title = {Collective symplectic integrators}, url = {http://dx.doi.org/10.1088/0951-7715/27/6/1525}, volume = {27}, year = {2014}, } S. Marsland, R. McLachlan, K. Modin, and M. Perlmutter On conformal variational problems and free boundary continua J. Phys. A, 2014 arXiv DOI Bib @article{MaMcMoPe2014, author = {Marsland, S. and McLachlan, R. and Modin, K. and Perlmutter, M.}, doi = {10.1088/1751-8113/47/14/145204}, journal = {J. Phys. A}, number = {14}, pages = {145204}, title = {On conformal variational problems and free boundary continua}, url = {http://dx.doi.org/10.1088/1751-8113/47/14/145204}, volume = {47}, year = {2014}, } FoCM R. McLachlan, K. Modin, O. Verdier, and M. Wilkins Geometric Generalisations of SHAKE and RATTLE Found. Comput. Math., 2014 arXiv DOI Bib @article{McMoVeWi2014, author = {McLachlan, R. and Modin, K. and Verdier, O. and Wilkins, M.}, doi = {10.1007/s10208-013-9163-y}, journal = {Found. Comput. Math.}, number = {2}, pages = {339--370}, title = {Geometric Generalisations of {SHAKE} and {RATTLE}}, url = {http://dx.doi.org/10.1007/s10208-013-9163-y}, volume = {14}, year = {2014}, } 2013 SIAM R. McLachlan, K. Modin, O. Verdier, and M. Wilkins Symplectic integrators for index 1 constraints SIAM J. Sci. Comput., 2013 arXiv DOI Bib @article{McMoVeWi2013, author = {McLachlan, R. and Modin, K. and Verdier, O. and Wilkins, M.}, doi = {10.1137/120885085}, journal = {SIAM J. Sci. Comput.}, number = {5}, pages = {A2150--A2162}, title = {Symplectic integrators for index 1 constraints}, url = {http://dx.doi.org/10.1137/120885085}, volume = {35}, year = {2013}, } K. Modin, and O. Verdier Integrability of Nonholonomically Coupled Oscillators Discrete Contin. Dyn. Syst., 2013 arXiv DOI Bib @article{MoVe2013, author = {Modin, K. and Verdier, O.}, doi = {10.3934/dcds.2014.34.1121}, journal = {Discrete Contin. Dyn. Syst.}, number = {3}, pages = {1121--1130}, title = {Integrability of Nonholonomically Coupled Oscillators}, url = {http://dx.doi.org/10.3934/dcds.2014.34.1121}, volume = {34}, year = {2013}, } S. Marsland, R. McLachlan, K. Modin, and M. Perlmutter Geodesic Warps by Conformal Mappings Int. J. Comput. Vis., 2013 arXiv DOI Bib @article{MaMcMoPe2013, author = {Marsland, S. and McLachlan, R. and Modin, K. and Perlmutter, M.}, doi = {10.1007/s11263-012-0584-x}, journal = {Int. J. Comput. Vis.}, number = {2}, pages = {144--154}, title = {Geodesic Warps by Conformal Mappings}, url = {http://dx.doi.org/10.1007/s11263-012-0584-x}, volume = {105}, year = {2013}, } 2011 S. Marsland, R. McLachlan, K. Modin, and M. Perlmutter On a Geodesic Equation for Planar Conformal Template Matching In Proc. MFCA’11, 2011 Bib @inproceedings{MaMcMoPe2011, author = {Marsland, S. and McLachlan, R. and Modin, K. and Perlmutter, M.}, booktitle = {Proc. MFCA'11}, title = {On a Geodesic Equation for Planar Conformal Template Matching}, year = {2011} } K. Modin, and G. Söderlind Geometric Integration of Hamiltonian Systems Perturbed by Rayleigh Damping BIT Num. Math., 2011 arXiv DOI Bib @article{MoSo2011, author = {Modin, K. and S{\"o}derlind, G.}, doi = {10.1007/s10543-011-0345-1}, journal = {BIT Num. Math.}, number = {4}, pages = {977--1007}, title = {Geometric Integration of Hamiltonian Systems Perturbed by {R}ayleigh Damping}, url = {http://dx.doi.org/10.1007/s10543-011-0345-1}, volume = {51}, year = {2011}, } K. Modin, M. Perlmutter, S. Marsland, and R. McLachlan On Euler-Arnold Equations and Totally Geodesic Subgroups J. Geom. Phys., 2011 DOI Bib @article{MoPeMaMc2011, author = {Modin, K. and Perlmutter, M. and Marsland, S. and McLachlan, R.}, doi = {10.1016/j.geomphys.2011.03.007}, journal = {J. Geom. Phys.}, number = {8}, pages = {1446--1461}, title = {On {E}uler-{A}rnold Equations and Totally Geodesic Subgroups}, url = {http://dx.doi.org/10.1016/j.geomphys.2011.03.007}, volume = {61}, year = {2011}, } 2009 K. Modin Time-transformation and reversibility of Nambu-Poisson systems J. Gen. Lie Theory Appl., 2009 DOI Bib @article{Mo2009, author = {Modin, K.}, doi = {10.4303/jglta/S080103}, journal = {J. Gen. Lie Theory Appl.}, number = {1}, pages = {39--52}, title = {Time-transformation and reversibility of {N}ambu-{P}oisson systems}, url = {http://dx.doi.org/10.4303/jglta/S080103}, volume = {3}, year = {2009}, } 2008 K. Modin On explicit adaptive symplectic integration of separable Hamiltonian systems J. Mult. Body Mech., 2008 DOI Bib @article{Mo2008, author = {Modin, K.}, doi = {10.1243/14644193JMBD171}, journal = {J. Mult. Body Mech.}, number = {4}, pages = {1464--1493}, title = {On explicit adaptive symplectic integration of separable {H}amiltonian systems}, url = {http://dx.doi.org/10.1243/14644193JMBD171}, volume = {222}, year = {2008}, } 2006 K. Modin, and C. Führer Time-step adaptivity in variational integrators with application to contact problems ZAMM Z. Angew. Math. Mech., 2006 DOI Bib @article{MoFu2006, author = {Modin, K. and F{\"u}hrer, C.}, doi = {10.1002/zamm.200610286}, journal = {ZAMM Z. Angew. Math. Mech.}, number = {10}, pages = {785--794}, title = {Time-step adaptivity in variational integrators with application to contact problems}, url = {http://dx.doi.org/10.1002/zamm.200610286}, volume = {86}, year = {2006}, } book chapters K. Modin Geometric Hydrodynamics: from Euler, to Poincaré, to Arnold In 13th Young Researchers Workshop on Geometry, Mechanics and Control: Three Mini-courses, 2019 arXiv Bib @incollection{Mo2019, address = {Portugal}, author = {Modin, K.}, booktitle = {13th Young Researchers Workshop on Geometry, Mechanics and Control: Three Mini-courses}, pages = {69--92}, publisher = {Departamento de Matematica da Universidade de Coimbra}, title = {Geometric Hydrodynamics: from {E}uler, to {P}oincar\'e, to {A}rnold}, volume = {48}, year = {2019}, } M. Bauer, S. Joshi, and K Modin Diffeomorphic density registration In Riemannian Geometric Statistics in Medical Image Analysis, 2020 DOI Bib @incollection{BaJoMo2020, author = {Bauer, M. and Joshi, S. and Modin, K}, title = {Diffeomorphic density registration}, editor = {Pennec, X. and Sommer, S. and Fletcher, T.}, booktitle = {Riemannian Geometric Statistics in Medical Image Analysis}, publisher = {Academic Press}, pages = {577-603}, year = {2020}, isbn = {978-0-12-814725-2}, doi = {10.1016/B978-0-12-814725-2.00025-X}, } K. Modin Adaptive Geometric Numerical Integration of Mechanical Systems Lund University, 2009 Bib HTML @phdthesis{Mo2009thesis, author = {Modin, K.}, school = {Lund University}, title = {Adaptive Geometric Numerical Integration of Mechanical Systems}, year = {2009}, url = {http://lup.lub.lu.se/record/1390975}, } technical reports S. S. Larsson, T. Matsuo, K. Modin, and M. Molteni Discrete Variational Derivative Methods for the EPDiff Equation 2016 arXiv Bib @techreport{LaMaMoMo2016, author = {S. Larsson, S. and Matsuo, T. and Modin, K. and Molteni, M.}, institution = {Chalmers University of Technology}, keywords = {Euler equations, Shape analysis}, title = {Discrete Variational Derivative Methods for the {EPDiff} Equation}, year = {2016}, } K. Modin Diffeomorphic density transport - a numerical challenge In Oberwolfach Rep. 13: Geometric Numerical Integration, 2016 DOI Bib @inproceedings{Mo2016a, author = {Modin, K.}, booktitle = {Oberwolfach Rep. 13: Geometric Numerical Integration}, doi = {10.4171/OWR/2016/18}, editor = {Faou, E. and Hairer, E. and Hochbruck, M. and Lubich, C.}, number = {18}, title = {Diffeomorphic density transport - a numerical challenge}, year = {2016}, } Proceedings of Math on the Rocks Shape Analysis Workshop in Grundsund Jul 2015 DOI Bib @proceedings{MoSo2015, doi = {10.5281/zenodo.33558}, editor = {Modin, K. and Sommer, S.}, month = jul, publisher = {Zenodo}, title = {Proceedings of Math on the Rocks Shape Analysis Workshop in Grundsund}, url = {http://dx.doi.org/10.5281/zenodo.33558}, year = {2015}, } K. Modin, M. Perlmutter, S Marsland, and R. McLachlan Geodesics on Lie Groups: Euler Equations and Totally Geodesic Subgroups Jul 2010 Bib HTML @techreport{MoPeMaMc2010, author = {Modin, K. and Perlmutter, M. and Marsland, S and McLachlan, R.}, institution = {Massey University}, title = {Geodesics on Lie Groups: Euler Equations and Totally Geodesic Subgroups}, url = {http://hdl.handle.net/10179/4512}, year = {2010}, } K. Modin Geometric integration of non-autonomous systems with application to rotor dynamics Jul 2009 arXiv Bib @techreport{Mo2009a, author = {Modin, K.}, institution = {Lund University}, title = {Geometric integration of non-autonomous systems with application to rotor dynamics}, year = {2009}, }