@misc{JaMo2023,author={Jansson, E. and Krook, J. and Modin, K. and Öktem, O.},title={Geometric shape matching for recovering protein conformations from single-particle {Cryo-EM} data},year={2024},}
@misc{JaMo2025,author={Jansson, E. and Modin, K.},title={Sub-{R}iemannian landmark matching and its interpretation as residual neural networks},year={2022},}
@article{MoRo2025,title={Spatio-temporal {L}ie-{P}oisson discretization for incompressible magnetohydrodynamics on the sphere},author={Modin, K. and Roop, M.},year={2025},url={https://doi.org/10.1093/imanum/draf024},doi={10.1093/imanum/draf024},journal={IMA J. Numer. Anal.}}
@article{MoPr2025,author={Modin, K. and Preston, S. C.},title={Zeitlin's model for axisymmetric {3-D} {E}uler equations},year={2025},url={https://doi.org/10.1088/1361-6544/ada511},doi={10.1088/1361-6544/ada511},journal={Nonlinearity},volume={38},pages={025008}}
@article{MoPe2024,author={Modin, K. and Perrot, M.},journal={Comm. Math. Phys.},title={{E}ulerian and {L}agrangian stability in {Z}eitlin's model of hydrodynamics},url={https://doi.org/10.1007/s00220-024-05047-x},doi={10.1007/s00220-024-05047-x},pages={177},volume={405},year={2024},}
K. Modin
On the geometry and dynamical formulation of the Sinkhorn algorithm for optimal transport
@article{Mo2024,author={Modin, K.},journal={J. Comput. Dyn.},title={On the geometry and dynamical formulation of the {S}inkhorn algorithm for optimal transport},url={https://doi.org/10.3934/jcd.2024006},doi={10.3934/jcd.2024006},year={2024},}
@article{KhMoVo2024,author={Khesin, B. and Modin, K. and Volk, L.},doi={10.1093/imrn/rnae020},issue={10},journal={Int. Math. Res. Not.},pages={8839--8855},title={Simple unbalanced optimal transport},url={https://doi.org/10.1093/imrn/rnae020},volume={2024},year={2024},}
@article{JaMo2024,author={Jansson, E. and Modin, K.},doi={10.3934/jcd.2023008},journal={J. Comput. Dyn.},title={Convergence of the vertical gradient flow for the {G}aussian {M}onge problem},url={https://doi.org/10.3934/jcd.2023008},volume={11},pages={1--9},year={2024},}
@article{KhMo2023,author={Khesin, B. and Modin, K.},doi={10.1007/s00220-023-04680-2},journal={Comm. Math. Phys.},pages={1879--1898},title={The {T}oda flow as a porous medium equation},url={https://doi.org/10.1007/s00220-023-04680-2},volume={401},year={2023},}
@article{MaMoSc2023,author={Maurelli, M. and Modin, K. and Schmeding, A.},doi={10.1016/j.spa.2023.01.011},journal={Stochastic Process. Appl.},pages={101--148},title={Incompressible {E}uler equations with stochastic forcing: a geometric approach},url={https://doi.org/10.1016/j.spa.2023.01.011},volume={159},year={2023},}
@article{CiViMo2022,author={Cifani, P. and Viviani, M. and Modin, K.},doi={10.1016/j.jcp.2022.111772},journal={J. Comput. Phys.},pages={111772},title={An efficient geometric method for incompressible hydrodynamics on the sphere},url={https://doi.org/10.1016/j.jcp.2022.111772},volume={473},year={2023},}
@article{BaKaMo2022,author={Balehowsky, T. and Karlsson, C-J. and Modin, K.},doi={10.1088/1361-6544/aca73c},journal={Nonlinearity},pages={862},title={Shape analysis via gradient flows on diffeomorphism groups},url={https://doi.org/10.1088/1361-6544/aca73c},volume={36},year={2022},}
@article{CiViLuMoGe2022,author={Cifani, P. and Viviani, M. and Luesink, E. and Modin, K. and Geurts, B.},doi={10.1103/PhysRevFluids.7.L082601},journal={Phys. Rev. Fluids},pages={L082601},title={Casimir preserving spectrum of two-dimensional turbulence},url={https://doi.org/10.1103/PhysRevFluids.7.L082601},volume={7},year={2022},}
@article{MoVi2022,author={Modin, K. and Viviani, M.},doi={10.1017/jfm.2022.457},journal={J. Fluid Mech.},pages={A36},title={Canonical scale separation in two-dimensional incompressible hydrodynamics},url={https://doi.org/10.1017/jfm.2022.457},volume={943},year={2022},}
@article{KhMiMo2021,author={Khesin, B. and Misiolek, G. and Modin, K.},doi={10.1090/bull/1728},journal={Bull. Amer. Math. Soc.},pages={377--442},title={Geometric hydrodynamics and infinite-dimensional {N}ewton's equations},url={https://doi.org/10.1090/bull/1728},volume={58},year={2021},}
@article{MoVi2021,author={Modin, K. and Viviani, M.},doi={10.1007/s40598-020-00162-8},journal={Arnold Math. J.},number={3},pages={357--385},title={Integrability of point-vortex dynamics via symplectic reduction: a survey},url={https://doi.org/10.1007/s40598-020-00162-8},volume={7},year={2021},}
@article{MoVe2020,author={Modin, K. and Verdier, O.},doi={10.1007/s00211-020-01126-y},journal={Numer. Math.},pages={405--435},title={What makes nonholonomic integrators work?},url={https://doi.org/10.1007/s00211-020-01126-y},volume={145},year={2020},}
@article{BaMo2020,author={Bauer, M. and Modin, K.},doi={10.1007/s00526-020-1722-x},journal={Calc. Var. Partial Differential Equations},pages={65},title={Semi-invariant {R}iemannian metrics in hydrodynamics},url={https://doi.org/10.1007/s00526-020-1722-x},volume={59},year={2020},}
@article{MoVi2020,author={Modin, K. and Viviani, M.},doi={10.1017/jfm.2019.944},journal={J. Fluid Mech.},pages={A22},title={A {C}asimir preserving scheme for long-time simulation of spherical ideal hydrodynamics},url={https://doi.org/10.1017/jfm.2019.944},volume={884},year={2020},}
@article{MoVi2020a,author={Modin, K. and Viviani, M.},doi={10.1007/s10208-019-09428-w},journal={Found. Comput. Math.},pages={889--921},title={{L}ie-{P}oisson methods for isospectral flows},url={https://doi.org/10.1007/s10208-019-09428-w},volume={20},year={2020},}
@article{BeMaMcMoVe2019,author={Benn, J. and Marsland, S. and McLachlan, R. and Modin, K. and Verdier, O.},doi={10.1007/s10851-019-00896-x},journal={J. Math. Imaging Vis.},number={8},pages={1197--1220},title={Currents and finite elements as tools for shape space},url={https://doi.org/10.1007/s10851-019-00896-x},volume={61},year={2019},}
@article{KhMiMo2019,author={Khesin, B. and Misiolek, G. and Modin, K.},doi={10.1007/s00205-019-01397-2},journal={Arch. Ration. Mech. Anal.},number={2},pages={549--573},title={Geometry of the {M}adelung transform},url={https://doi.org/10.1007/s00205-019-01397-2},volume={234},year={2019},}
@article{HeThMoIuBeErBeDe2019,author={Hellsvik, J. and Thonig, D. and Modin, K. and Iusan, D. and Bergman, A. and Eriksson, O. and Bergqvist, L. and Delin, A.},doi={10.1103/PhysRevB.99.104302},journal={Phys. Rev. B},pages={104302},title={General method for atomistic spin-lattice dynamics with first-principles accuracy},url={https://doi.org/10.1103/PhysRevB.99.104302},volume={99},year={2019},}
@article{MoNaRo2018,author={Modin, K. and Nachman, A. and Rondi, L.},doi={10.1016/j.aim.2019.02.014},journal={Adv. Math.},pages={1009--1066},title={A Multiscale Theory for Image Registration and Nonlinear Inverse Problems},url={https://doi.org/10.1016/j.aim.2019.02.014},volume={346},year={2018},}
@article{BoMoVe2018,author={Bogfjellmo, G. and Modin, K. and Verdier, O.},doi={10.1137/17M1123353},journal={SIAM J. Numer. Analysis},number={4},pages={2623--2647},title={A Numerical Algorithm for {C2}-splines on Symmetric Spaces},url={https://doi.org/10.1137/17M1123353},volume={56},year={2018},}
@article{KhMiMo2018,author={Khesin, B. and Misiolek, G. and Modin, K.},doi={10.1073/pnas.1719346115},journal={Proc. Natl. Acad. Sci. USA},number={24},pages={6165--6170},title={Geometric Hydrodynamics via {M}adelung Transform},url={https://doi.org/10.1073/pnas.1719346115},volume={115},year={2018},}
@inproceedings{BaJoMo2017,author={Bauer, M. and Joshi, S. and Modin, K.},booktitle={Nielsen F., Barbaresco F. (eds) Geometric Science of Information. GSI 2017. Lecture Notes in Computer Science, vol 10589. Springer},doi={10.1007/978-3-319-68445-1_16},title={Diffeomorphic random sampling using optimal information transport},url={https://doi.org/10.1007/978-3-319-68445-1_16},year={2017},}
@article{BaJoMo2017a,author={Bauer, M. and Joshi, S. and Modin, K.},doi={10.1007/s00526-017-1195-8},journal={Calc. Var. Partial Differential Equations},pages={113},title={On Geodesic Completeness of {R}iemannian Metrics on Smooth Probability Densities},url={http://dx.doi.org/10.1007/s00526-017-1195-8},volume={56},year={2017},}
K. Modin
Geometry of Matrix Decompositions Seen Through Optimal Transport and Information Geometry
@article{Mo2017,author={Modin, K.},doi={10.3934/jgm.2017014},journal={J. Geom. Mech.},number={3},pages={335--390},title={Geometry of Matrix Decompositions Seen Through Optimal Transport and Information Geometry},url={http://dx.doi.org/10.3934/jgm.2017014},volume={9},year={2017},}
@article{McMoMuVe2017,author={McLachlan, R. and Modin, K. and Munthe-Kaas, H. and Verdier, O.},journal={Asia Pacific Mathematics Newsletter},number={1},pages={1--11},title={Butcher series: A story of rooted trees and numerical methods for evolution equations},volume={7},year={2017},}
@article{McMoVe2017,author={McLachlan, R. and Modin, K. and Verdier, O.},doi={10.1090/mcom/3153},journal={Math. Comp.},number={307},pages={2325--2344},title={A minimal-variable symplectic integrator on spheres},url={http://dx.doi.org/10.1090/mcom/3153},volume={86},year={2017},}
@article{McMoVe2016,author={McLachlan, R. and Modin, K. and Verdier, O.},doi={10.1088/0143-0807/37/5/055003},journal={Eur. J. Phys.},number={5},pages={0055003},title={Symmetry reduction for central force problems},url={http://dx.doi.org/10.1088/0143-0807/37/5/055003},volume={37},year={2016},}
@article{McMoVe2016a,author={McLachlan, R. and Modin, K. and Verdier, O.},doi={10.1007/s00332-016-9311-z},journal={J. Nonlin. Sci.},number={5},pages={1507--1523},title={Geometry of discrete-time spin systems},url={http://dx.doi.org/10.1007/s00332-016-9311-z},volume={26},year={2016},}
@article{McMoMuVe2016,author={McLachlan, R. and Modin, K. and Munthe-Kaas, H. and Verdier, O.},doi={10.1007/s00211-015-0753-2},journal={Numer. Math.},number={3},pages={599--622},title={B-series methods are exactly the affine equivariant methods},url={http://dx.doi.org/10.1007/s00211-015-0753-2},volume={133},year={2016},}
@inproceedings{RoBaMoJo2015,author={Rottman, C. and Bauer, M. and Modin, K. and Joshi, S.},booktitle={Proc. 5th MICCAI Workshop on Mathematical Foundations of Computational Anatomy (MFCA), Munich, Germany, October 9},title={Weighted Diffeomorphic Density Matching with Applications to Thoracic Image Registration},year={2015},}
@article{BaJoMo2015,author={Bauer, M. and Joshi, S. and Modin, K.},doi={10.1137/151006238},journal={SIAM J. Imaging Sci.},number={3},pages={1718--1751},title={Diffeomorphic density matching by optimal information transport},url={http://dx.doi.org/10.1137/151006238},volume={8},year={2015},}
@article{McMoVe2015,author={McLachlan, R. and Modin, K. and Verdier, O.},doi={10.1093/imanum/dru013},journal={IMA. J. Num. Anal.},number={2},pages={546--560},title={Collective {L}ie-{P}oisson integrators on {R3}},url={http://dx.doi.org/10.1093/imanum/dru013},volume={35},year={2015},}
K. Modin
Generalized Hunter-Saxton equations, optimal information transport, and factorization of diffeomorphisms
@article{Mo2015,author={Modin, K.},doi={10.1007/s12220-014-9469-2},journal={J. Geom. Anal.},number={2},pages={1306--1334},title={Generalized {H}unter-{S}axton equations, optimal information transport, and factorization of diffeomorphisms},url={http://dx.doi.org/10.1007/s12220-014-9469-2},volume={25},year={2015},}
@article{McMoVe2014,author={McLachlan, R. and Modin, K. and Verdier, O.},doi={10.1103/PhysRevE.89.061301},journal={Phys. Rev. E},pages={061301},title={Symplectic integrators for spin systems},url={http://dx.doi.org/10.1103/PhysRevE.89.061301},volume={89},year={2014},}
@article{McMoVe2014a,author={McLachlan, R. and Modin, K. and Verdier, O.},doi={10.1088/0951-7715/27/6/1525},journal={Nonlinearity},number={6},pages={1525--1542},title={Collective symplectic integrators},url={http://dx.doi.org/10.1088/0951-7715/27/6/1525},volume={27},year={2014},}
@article{MaMcMoPe2014,author={Marsland, S. and McLachlan, R. and Modin, K. and Perlmutter, M.},doi={10.1088/1751-8113/47/14/145204},journal={J. Phys. A},number={14},pages={145204},title={On conformal variational problems and free boundary continua},url={http://dx.doi.org/10.1088/1751-8113/47/14/145204},volume={47},year={2014},}
@article{McMoVeWi2014,author={McLachlan, R. and Modin, K. and Verdier, O. and Wilkins, M.},doi={10.1007/s10208-013-9163-y},journal={Found. Comput. Math.},number={2},pages={339--370},title={Geometric Generalisations of {SHAKE} and {RATTLE}},url={http://dx.doi.org/10.1007/s10208-013-9163-y},volume={14},year={2014},}
@article{McMoVeWi2013,author={McLachlan, R. and Modin, K. and Verdier, O. and Wilkins, M.},doi={10.1137/120885085},journal={SIAM J. Sci. Comput.},number={5},pages={A2150--A2162},title={Symplectic integrators for index 1 constraints},url={http://dx.doi.org/10.1137/120885085},volume={35},year={2013},}
@article{MoVe2013,author={Modin, K. and Verdier, O.},doi={10.3934/dcds.2014.34.1121},journal={Discrete Contin. Dyn. Syst.},number={3},pages={1121--1130},title={Integrability of Nonholonomically Coupled Oscillators},url={http://dx.doi.org/10.3934/dcds.2014.34.1121},volume={34},year={2013},}
@article{MaMcMoPe2013,author={Marsland, S. and McLachlan, R. and Modin, K. and Perlmutter, M.},doi={10.1007/s11263-012-0584-x},journal={Int. J. Comput. Vis.},number={2},pages={144--154},title={Geodesic Warps by Conformal Mappings},url={http://dx.doi.org/10.1007/s11263-012-0584-x},volume={105},year={2013},}
@inproceedings{MaMcMoPe2011,author={Marsland, S. and McLachlan, R. and Modin, K. and Perlmutter, M.},booktitle={Proc. MFCA'11},title={On a Geodesic Equation for Planar Conformal Template Matching},year={2011}}
@article{MoSo2011,author={Modin, K. and S{\"o}derlind, G.},doi={10.1007/s10543-011-0345-1},journal={BIT Num. Math.},number={4},pages={977--1007},title={Geometric Integration of Hamiltonian Systems Perturbed by {R}ayleigh Damping},url={http://dx.doi.org/10.1007/s10543-011-0345-1},volume={51},year={2011},}
@article{MoPeMaMc2011,author={Modin, K. and Perlmutter, M. and Marsland, S. and McLachlan, R.},doi={10.1016/j.geomphys.2011.03.007},journal={J. Geom. Phys.},number={8},pages={1446--1461},title={On {E}uler-{A}rnold Equations and Totally Geodesic Subgroups},url={http://dx.doi.org/10.1016/j.geomphys.2011.03.007},volume={61},year={2011},}
2009
K. Modin
Time-transformation and reversibility of Nambu-Poisson systems
@article{Mo2009,author={Modin, K.},journal={J. Gen. Lie Theory Appl.},number={1},pages={39--52},title={Time-transformation and reversibility of {N}ambu-{P}oisson systems},url={https://projecteuclid.org/journals/journal-of-generalized-lie-theory-and-applications/volume-3/issue-1/Time-transformation-and-reversibility-of-Nambu--Poisson-systems/10.4303/jglta/S080103.full},volume={3},year={2009},}
2008
K. Modin
On explicit adaptive symplectic integration of separable Hamiltonian systems
@article{MoFu2006,author={Modin, K. and F{\"u}hrer, C.},doi={10.1002/zamm.200610286},journal={ZAMM Z. Angew. Math. Mech.},number={10},pages={785--794},title={Time-step adaptivity in variational integrators with application to contact problems},url={http://dx.doi.org/10.1002/zamm.200610286},volume={86},year={2006},}
book chapters
K. Modin
Geometric Hydrodynamics: from Euler, to Poincaré, to Arnold
In 13th Young Researchers Workshop on Geometry, Mechanics and Control: Three Mini-courses, 2019
@incollection{Mo2019,address={Portugal},author={Modin, K.},booktitle={13th Young Researchers Workshop on Geometry, Mechanics and Control: Three Mini-courses},pages={69--92},publisher={Departamento de Matematica da Universidade de Coimbra},title={Geometric Hydrodynamics: from {E}uler, to {P}oincar\'e, to {A}rnold},volume={48},year={2019},}
@incollection{BaJoMo2020,author={Bauer, M. and Joshi, S. and Modin, K},title={Diffeomorphic density registration},editor={Pennec, X. and Sommer, S. and Fletcher, T.},booktitle={Riemannian Geometric Statistics in Medical Image Analysis},publisher={Academic Press},pages={577-603},year={2020},isbn={978-0-12-814725-2},doi={10.1016/B978-0-12-814725-2.00025-X},}
K. Modin
Adaptive Geometric Numerical Integration of Mechanical Systems
@techreport{LaMaMoMo2016,author={S. Larsson, S. and Matsuo, T. and Modin, K. and Molteni, M.},institution={Chalmers University of Technology},keywords={Euler equations, Shape analysis},title={Discrete Variational Derivative Methods for the {EPDiff} Equation},year={2016},}
K. Modin
Diffeomorphic density transport - a numerical challenge
In Oberwolfach Rep. 13: Geometric Numerical Integration, 2016
@inproceedings{Mo2016a,author={Modin, K.},booktitle={Oberwolfach Rep. 13: Geometric Numerical Integration},doi={10.4171/OWR/2016/18},editor={Faou, E. and Hairer, E. and Hochbruck, M. and Lubich, C.},number={18},title={Diffeomorphic density transport - a numerical challenge},year={2016},}
Proceedings of Math on the Rocks Shape Analysis Workshop in Grundsund
@proceedings{MoSo2015,doi={10.5281/zenodo.33558},editor={Modin, K. and Sommer, S.},month=jul,publisher={Zenodo},title={Proceedings of Math on the Rocks Shape Analysis Workshop in Grundsund},url={http://dx.doi.org/10.5281/zenodo.33558},year={2015},}
@techreport{MoPeMaMc2010,author={Modin, K. and Perlmutter, M. and Marsland, S and McLachlan, R.},institution={Massey University},title={Geodesics on Lie Groups: Euler Equations and Totally Geodesic Subgroups},url={http://hdl.handle.net/10179/4512},year={2010},}
K. Modin
Geometric integration of non-autonomous systems with application to rotor dynamics
@techreport{Mo2009a,author={Modin, K.},institution={Lund University},title={Geometric integration of non-autonomous systems with application to rotor dynamics},year={2009},}